How to calculate the dominant wavelengths of a stratigraphic series? By Mingsong Li (msli@pku.edu.cn), Peking University, Feb. 5, 2021

Step 1: Load the example data: "Example-WayaoCarnianGR0.txt".

•	•		1		Acycle	v2.2	5			
File	Edit	Plot	Basic Series	Math	Times	eries	Help			
	/Users	///	Insolation Astronomic Length-of-	al Solut day & D	tion Day-of-y	策1 策2 ear		(m 😌		
			Signal/Nois	e Gene	rator	Ж3				
 Exam Exam	ple-Way	vaoCarni vaoCarni	LR04 Stack			₩4				
Insol- Insol- Insol- SigG SigG	-t-1-800 -t-1-800 -t-1-800 en-sine/ en-sine/	ka-day- ka-day- ka-day- 1T100F	Examples O-lat-(65)-meandaily-La04.txt 10B0.txt 0B0.txt				Ma Ins La2	una Loa CO2 monthly mean olation 0-2Ma 65N Jun22 2004 0-2Ma ETP		
merg	edseries	.txt					Red	Red Noise rho=0.7 2000 points		
							PET Lat	FM Svalbard logFe e Triassic Newark Depth Rank		
							Lat	e Triassic Wayao gamma ray 🏴		

Step 2: Run the interpolation for the selected data.

Select the loaded data, choose the "Interpolation" tool. Here I use a 0.33 m as the new sampling rate for interpolation.

• •	•	•			Acycle v2.2				
File	Edit	Plot	Basic Series	Math	Timeseries	Help			
1		1	m. 5	Sort	/Unique/Delet	te-empty	жU	🔴 🔴 🌒 Interpolation	
/Users/mingsongli/Desktop/test				Inter	polation		ЖI		
				Inter	Interpolate Series Select Parts			New sample rate (default = median): 0.33	
				Sele					
 Exam	ple-Way	aoCarn	ianGR0-rsp0.33.tx	Merge Series				OK Cancel	
Exam	ple-Way	aoCarn	ianGR0.txt	Mult	iply Series				

Step 4: Remove the long-term trend. See below as an example.

Step 3: Select the interpolated, detrended data, and then the toolbox named "power spectral analysis". Using the following settings (right panel), you will have a power spectrum (left panel). Clicking the peaks, the period in m and power will pop-up. The result means a 2-pi MTM power spectrum indicates dominated peaks at 35.2 m, 9.68 m, 6.78 m, and ca. 2.67 m (and more if you keep on clicking).

If one unselects "log(freq.)" and "X in period" in the right panel above, the power spectrum will be shown as x-axis in frequency (here, cycle/m), that is 1/period. You will need to click the frequency peaks and calculate using a simple equation: Period (m) = 1/frequency. For example, 1/[0.028374 cycle/m] = 35.244 m.

	Acycle: Spe	ctral Analysis	ò
ect method	Multi-taper r	٥	
thod	())	Plot: max free	quency & Y
ime-bandwidth product	2 2.0	Nyquis	t 1.5152
eropadding		O Input	
5 x •	534		
1 noise		✓ Linear '	Y 📃 Log Y
Robust AR(1)	P.L.	log(free	q.) 🗌 X in period
Classic AR(1)	B.P.L.		
F-test & Ampl.		Run	Run & Save