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A B S T R A C T

Recognition and interpretation of paleoclimate signals in sedimentary proxy datasets are time consuming and
subjective. Acycle is a comprehensive and easy-to-use software package for time series analysis in paleoclimate
research and education. It is designed to speed paleoclimate time series analysis, especially cyclostratigraphy,
and to provide objective methods for estimating astrochronology. Acycle provides for detrending with multiple
options to track and remove secular trends. A selection of power spectral analysis methodologies is offered for
the detection of periodic signals. Many of the functions are specific to cyclostratigraphy and astrochronology
that are not found in standard statistical packages. A specialized function is provided to assess the astronomical
(Milankovitch) forcing of paleoclimate series and search for the most likely sedimentation rate by evaluating the
correlation coefficient between power spectra of an astronomical solution and sedimentary proxy data.
Sedimentary noise modeling (for past sea-level changes) is also provided in Acycle. As an example, Acycle is
applied to a sedimentary proxy series from the cyclostratigraphy of the Paleocene-Eocene thermal maximum
(PETM) in Core BH9/05 from the Paleogene Central Basin, Svalbard. Acycle detects significant astronomical
forcing in the proxy series and relatively stable sedimentation rates during and after the PETM. Acycle runs in the
MATLAB environment or as stand-alone software on Windows and Macintosh OS X, and is open-source software.

1. Introduction

Time series analysis plays a fundamental role in the natural sci-
ences. In growing important geoscience application, recognition and
interpretation of (quasi-) periodic astronomical (Milankovitch) signals
in sedimentary records can be time consuming and subjective. Many
analysis steps are required in time series analysis, including detrending
(to remove long-term secular trends), power spectral analysis (to
evaluate periodicity in signals), evolutionary power spectral analysis
(for tracking time-variable periodicity in signals), and hypothesis tests
(for assessing signal-to-noise ratios) (Ghil, 1997; Kodama and Hinnov,
2015; Mann and Lees, 1996; Thomson, 2009; Weedon, 2003). Methods
of evaluating sediment accumulation rates include the average spectral
misfit (ASM) (Meyers and Sageman, 2007), Bayesian Monte Carlo
(Malinverno et al., 2010), TimeOpt (Meyers, 2015), evolutive TimeOpt
(Meyers, 2019), and correlation coefficient (COCO) (Li et al., 2018c)
approaches. The selection of parameters for these (and other proce-
dures in Acycle) can be complex and have a significant influence on the
interpretation.

Three reasons motivated the development of the Acycle time series

analysis program: (1) There is a need to broaden and encourage the
experience of time series analysis in the geosciences, especially in cy-
clostratigraphy. (2) There is a need to speed the process for the time-
series analysis steps (detailed in Section 4), which can be very time-
consuming. (3) There is a need to provide objective methods for the
analysis of paleoclimate signals as reproducibility becomes a major
challenge.

The Acycle software package integrates the analysis of paleoclimate
time series using the MATLAB programming language. The functions
accommodate independent variables of any dimension, but typically,
paleoclimate data present first in the stratigraphic (depth) domain with
units in cm, m, etc., and once a sedimentation rate is applied to the data
(or the data are otherwise tuned), in the time domain with units in
years, kyr, etc. Acycle also runs as a stand-alone program on Windows
and Macintosh OS platform with multiple language versions. The soft-
ware is powerful, but easy-to-use with its graphical user interface (GUI).
Acycle should benefit research and education in the closely allied fields
of paleoclimatology, paleoceanography, cyclostratigraphy, and astro-
chronology.

In this paper, we introduce the structure of Acycle, accepted styles of
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data inputs and outputs, and the functions provided for the time series
analysis of paleoclimate signals. There is an emphasis on methods and
toolboxes that are not available in other similar software packages.
Similarities and differences between Acycle and other similar applica-
tions (e.g., AnalySeries (Paillard et al., 1996), Astrochron (Meyers,
2014), REDFIT (Schulz and Mudelsee, 2002), and PAST (Hammer et al.,
2001), among others) are discussed briefly. Functionality is demon-
strated with an analysis of a paleoclimate data series from the Paleo-
cene-Eocene Thermal Maximum interval that is included in Acycle as a
test case.

2. Acycle software structure

The software includes a menu bar, a toolbar, an address line, and a
list box (Fig. 1). The menu bar provides access to functions and various
toolboxes (Fig. 2), e.g., functions for file editing and plotting, access to
demonstration time series, time series toolboxes, and Help documents.
The toolbar enables quick access to frequently used functions and
toolboxes, e.g., clicking on the “Refresh” button triggers the program to
refresh the list box and “Unit” for the unit selection. The list box dis-
plays files and folders within the directory in the address line.

3. Data inputs and outputs

The input file containing a paleoclimate series can be in a variety of
formats, including table- or space-delimited text, or comma-separated
values files from an Excel-type spreadsheet. The data file must contain
two columns with values. The first column must be depth or time, and
the second column must contain the values that are assigned to the
corresponding depth or time. All data files, plots, and folders are dis-
played in the GUI list box (Fig. 1). A couple of example data files can be
accessed at “Examples” under the “Basic series” menu (Fig. 2).

The user can output data series in *.txt or *.csv type using the ap-
propriate menu. Generally, Acycle will show all generated figures
(plots), and the user will ultimately decide which ones should be saved.
The plots can be saved as raster images, vector images, or MATLAB
Figure (*.fig) file. Supported output raster image types include JPEG
(*.jpg), Bitmap (*.bmp), Portable Network Graphics (*.png), and TIFF
(*.tif). Vector images include Portable Document Format (.pdf) and
Scalable Vector Graphics (*.svg).

4. Typical procedures in cyclostratigraphy

The identification of potential astronomical signals in stratigraphic
data series using Acycle involves the following steps:

(1) Users must formulate the data in an input format accepted by
Acycle (Section 3).

(2) Original data may need sorting, removing empty values, or aver-
aging multiple values assigned to the same depth (time) (Section
4.2).

(3) The data must be interpolated to a uniform sampling interval
(Section 4.3).

(4) Detrending is usually useful (Section 4.4).
(5) Power spectral analysis is used to identify dominant frequencies

(Section 4.5). Fitting a red noise model to the background spec-
trum can help to determine which spectral peaks are significantly
different from noise.

(6) Users may need evolutionary power spectral analysis for in-
specting changes in frequency patterns through the data series
(Section 4.6).

(7) A method that applies a correlation coefficient approach jointly
determines optimal sedimentation rate and tests the null hypothesis
that no Milankovitch frequency is present in the data (Section 4.7).

(8) Based on the wavelengths (stratigraphic thicknesses) of prominent
cycles in a stratigraphic data series, and an assumed sedimentation
rate, filtering tools may be applied to isolate specific frequency
bands (Section 4.8).

(9) Stratigraphic data series may be correlated/tuned using the “Age
Scale” function in Acycle based on the astronomical cycles inferred
from filtering (Section 4.9).

(10) Other approaches are provided to decipher hidden information in
the data, for example, a sedimentary noise model for stratigraphic
data from marginal marine successions that are linked to sea level
changes (Section 4.10).

Steps 3–10 are commonly time-consuming, and Steps 2–6 can be
done automatically with a “mini-robot” imbedded in Acycle (Fig. 1).
Below Acycle capabilities are demonstrated using a paleoclimate series
described in Section 4.1, with emphasis on key steps and new ap-
proaches that are not provided in other software (e.g., sedimentation
rate evaluation by correlation coefficient, COCO and eCOCO, and se-
dimentary noise modeling, DYNOT).

Fig. 1. Acycle graphical user interface (GUI).
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4.1. The demonstration paleoclimate series

The paleoclimate series used to demonstrate Acycle is the XRF-
generated iron (Fe) concentration series of Core BH9/05 from the
Paleogene Central Basin of Spitsbergen, Svalbard (Fig. 3). The full Fe
series of the Paleocene-Eocene Frysjaodden Formation was studied by
Charles et al. (2011) to construct an astrochronology for the global
carbon cycle perturbation associated with the Paleocene-Eocene
thermal maximum (PETM) (Cui et al., 2011). The Central Basin of
Spitsbergen developed as a foreland basin receiving muddy sediments
during Paleocene-Eocene time (Charles et al., 2011). The lithology at
Core BH9/05 is dominated by mudstone and balck shales. Fe is a proxy
of terrestrial input into the Central Basin.

4.2. Data preparation

Acycle includes several toolboxes to facilitate data preparation.
Users can sort data in ascending or descending order. Two or more
values for the same time (or depth) may be averaged with the “Unique”
function. A portion of the data series can be read or saved with user-
defined values, in time (or depth, the first column) and value (the
second column). Other useful tools include a moving average function
and a first-difference function (Fig. 2).

Many established statistical tests assume that the evaluated data

have a Gaussian (normal) distribution (Weedon, 2003). However, nat-
ural processes may have “non-Gaussian” distribution, which can lead to
difficulties of an evaluation (Kodama and Hinnov, 2015). The climate
response of a sedimentary proxy to forcing may be non-linear (Herbert,
1994; Martinez, 2018), or the variance of the series can be very large
(Charles et al., 2011), or the distribution might be asymmetric
(Prokopenko et al., 2006). Log-transformation, which is included in
Acycle, is frequently used to convert a time series that has a skewed
distribution to one that spans a much smaller range and is closer to
“Gaussian” (Kodama and Hinnov, 2015); this is true for the demon-
stration paleoclimate series here. Log-transformation can be applied
only to strictly positive values; negative numbers can be handled by
adding a positive constant so that all values become positive (Weedon,
2003).

4.3. Sampling rate and interpolation

Acycle includes functions to assess the sampling rate of the time
series. Stratigraphic depth or time series are typically irregularly spaced
due to uncertain timescales or difficulty in data collection (Martinez
et al., 2016). This necessitates interpolation to generate uniformly
spaced time (or depth) series. While several applications, such as
SPECTRUM (Schulz and Stattegger, 1997) and REDFIT (Schulz and
Mudelsee, 2002) apply the Lomb-Scargle periodogram for non-

Fig. 2. Acycle components.
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uniformly spaced time series, other powerful techniques such as mul-
titaper spectral analysis require uniformly sampled time series.

The user should be careful when interpolating irregularly spaced
data to a uniform sampling rate. If hypothesis testing is to be performed
with null models based on autoregressive noise, then the selected
sample rate (Δt) is crucial (detailed below and Eq. (4)) (Martinez et al.,
2016). Weedon (2003) recommends a minimum of four points per
major oscillation despite the strict definition of the Nyquist frequency
(fN = 1/(2*Δt)) of two samples per cycle. Prokopenko et al. (2006)
concluded that interpolating to a rate close to the average sampling rate
of an irregularly spaced stratigraphic dataset could result in loss of
information of high-frequency signals. When interpolation is needed,
one option is to interpolate the data using a sample interval that is half
that of the thinnest visible bed (Weedon, 2003).

The sample rate-dependent power spectrum of the first order au-
toregressive (AR(1)) process is for frequency f (e.g., Mann and Lees,
1996):
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The lag-1 autocorrelation coefficient (ρ1) is (e.g., Mudelsee, 2002):
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where x is the time series and n is the total number of uniformly
sampled points in x. Both x and n are dependent on Δt. Therefore, over-
interpolation leads to a higher ρ1 and an incorrect estimation of con-
ventional red noise background spectrum (Husson, 2014). Alter-
natively, a median or average sample distance for interpolation gen-
erates a more reasonable red-noise background.

In the demonstration paleoclimate series, the original sample rate of
the log(Fe) series of Core BH9/05 is bimodal, above 480m and below
480m. The series as a whole has a mean sampling rate of 0.23m and a
median sampling rate of 0.2m (Fig. 4). We interpolate the Fe series
using a Δd= 0.2m sample rate.

Fig. 3. Log-transformed Fe paleoclimate series from
552m to 460m at Core BH9/05 in the Paleocene
Central Basin of Svalbard. The Fe series is shown
with PETM event onset and “body” interval of a
prominent negative carbon isotope excursion, fol-
lowed by gradual recovery stages (Cui et al., 2011).
These data are from Charles et al. (2011): https://
agupubs.onlinelibrary.wiley.com/action/
downloadSupplement?doi=10.1029%
2F2010GC003426&file=ggge1904-sup-0002-ts01.
xls.

Fig. 4. Left panel: Sample rate of the Log(Fe) series of Core BH9/05 from the Paleogene Central Basin of Svalbard. Right panel: Histogram and the “kernel” fit of the
sample rates. Two peaks are centered at 0.2 and 0.4, respectively. These plots were generated using the “Sampling Rate” function in the “Plot” menu (Fig. 2).
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4.4. Detrending

Detrending is a key step in time series analysis. Time series can have
secular trends that are high amplitude and irregular, causing the bulk of
the data variability to be preferentially above or below the overall mean
value (Rodionov, 2006). Removal of these long-term trends, or de-
trending, is a critical step for power spectral analysis to ensure that data
variability oscillates about a zero mean, and to avoid power leakage
from very low-frequency components into higher frequencies of the
spectrum (Kodama and Hinnov, 2015).

Various “detrending” methods are provided in Acycle to estimate
and remove a secular trend (Fig. 5). These include high-pass filtering
(see section 4.8), polynomial fit, moving average, local regression
smoothing (LOWESS and LOESS) and their robust versions (rLOWESS
and rLOESS) that assign lower weight to outliers in the regression. This
requires the user to identify the most appropriate smoothing window.
The Mathworks Help Documentation on smooth.m includes a detailed
description of the algorithms used for the local regression techniques.

4.5. Power spectral analysis

Power spectral analysis has become a cornerstone in paleoclima-
tology and cyclostratigraphy. Power spectral analysis evaluates the
distribution of time series variance (power) as a function of frequency.
The primary use of power spectral analysis is for the recognition of
periodic or quasi-periodic components in a data series (Weedon, 2003).

The power spectrum can be evaluated with various nonparametric
or parametric approaches. The frequently used nonparametric based
spectral methods include the smoothed periodogram, Blackman-Tukey
correlogram, and multi-taper method (MTM) estimators (Kodama and
Hinnov, 2015; Weedon, 2003). Among these, the MTM estimator
achieves the optimal trade-off between frequency resolution and sta-
tistical confidence for uniformly spaced time series (Thomson, 1982).
For irregularly sampled time series in geosciences, the Lomb-Scargle
periodogram (Lomb, 1976; Scargle, 1982) can avoid spectral distortion
generated by interpolation. Basic descriptions of power spectral ana-
lysis and allied procedures are given in Box and Jenkins (1976);

Fig. 5. (a) The “Detrending” GUI. (b) The log(Fe) series of Core BH9/05 is shown with the mean, linear trend, second order polynomial fit, and various 50-m
smoothed secular trends using MatLab's “LOWESS”, “rLOWESS”, “LOESS”, and “rLOESS” methods. (c) 2π MTM power spectrum of un-detrended data. (d) 2π MTM
power spectrum of detrended data removing a 50-m “rLOESS” trend.
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Kodama and Hinnov (2015); Weedon (2003), and Kodama and Hinnov
(2015).

The confidence level of a frequency component in a time series
depends on the nature of background noise in the time series and the
statistical model used to estimate the background noise. The first-order
autoregressive AR(1) model (Eq. (4)) is a simple model for a discrete
finite red noise series (Gilman et al., 1963; Mudelsee, 2010). The AR(1)
model can be biased if the time series also contains a strong periodic or
quasiperiodic signal (Hinnov et al., 2016; Mann and Lees, 1996). A time
series may also have a spectrum that does not fit that of an AR(1)
process, with different distributions of power at low and high fre-
quencies. Consequently, Mann and Lees (1996) proposed a least-
squares analytic fit of the AR(1) model to a median-smoothed spectrum
estimate, which is known as robust AR(1) model. The goal of the model
is to remove signal contributions from the series prior to the AR(1)
modeling, assuming that high power “outliers” are signal contributions.
These models are extensively used in paleoclimate studies. Acycle in-
cludes both conventional and robust AR(1) modeling options.

The 2π multitaper (MTM) power spectrum of the Log(Fe) strati-
graphic series shows significant peaks above 95% confidence interval at
19.9 m, 7.7m, 1.9m and 1.6 m (Fig. 6) and above 90% confidence in-
terval at 5.0m and 1.0 m. Previous work (Charles et al., 2011) suggests
that the sedimentation rate is 21.5 cm/kyr for the Svalbard data series.
Therefore, the above stratigraphic cycles probably represent ∼93 kyr
(short orbital eccentricity), 36 kyr (obliquity), 23 kyr (precession), and
three sub-Milankovitch cycles of 8.8 kyr, 7.4 kyr and 4.7 kyr. This as-
sumption will be tested later in Section 4.7.

4.6. Evolutionary power spectral analysis

The spectral power can vary with depth or time, especially for pa-
leoclimatic and cylostratigraphic series, being a natural property of
most geoscientific data and leading to potential distortion of paleocli-
mate signals in depth domain (Kodama and Hinnov, 2015; Li et al.,
2018c; Weedon, 2003). When the length of the time series is longer
than the cyclicity of interest, then it is possible to generate power
spectra from many segments of the time series, given that each segment
is long enough for detection of all cycle frequencies of interest. This is
variously known as evolutionary (evolutive) spectral analysis, and
sliding-window (running-window) spectral analysis (Kodama and
Hinnov, 2015; Li et al., 2018b; Meyers and Hinnov, 2010; Meyers et al.,
2012; Weedon, 2003).

Acycle provides options for evolutionary FFT, MTM, and Lomb-
Scargle spectral analysis. User-defined parameters for these methods
can be modified in the “Evolutionary Spectral Analysis” GUI, including

sliding window length and step, maximum output frequency, and 2D/
3D plot options. (Fig. 7).

It is worth noting that the sliding (running) window is a key para-
meter of the evolutionary power spectral analysis. If the window is too
long, high frequencies will be overly smoothed, possibly not detected),
and if the window is too short, low frequencies will not be detected
adequately (Kodama and Hinnov, 2015). As an example, because the
longest cycle of interest in the log(Fe) series of Core BH9/05 is ∼20m,
a slightly longer window of 25m is adopted (Fig. 7). The evolutionary
FFT shows the 20-m cycles are consistent throughout the series. The 5m
precession cycles and 1.6–1.9m sub-Milankovitch cycles appear at the
∼475–520m interval (Fig. 7).

4.7. Evolutionary correlation coefficient

The Acycle software includes tools for simultaneously testing the
astronomical forcing of paleoclimate data series and mean sedimenta-
tion rate with a correlation coefficient (COCO) approach, with an ex-
tension for testing the evolution of sedimentation rate (eCOCO) along
the data series in the “Timeseries” menu (Li et al., 2018c). Similar
methods for simultaneously testing for sedimentation rate and astro-
nomical origins of stratigraphic data include the average spectral misfit
(ASM) method of Meyers and Sageman (2007) (and its evolutionary
extension eASM; Meyers, 2014), the Bayesian Monte Carlo method of
Malinverno et al. (2010) and the TimeOpt method of Meyers (2015)
(and its evolutionary extension eTimeOpt; Meyers, 2019). A compar-
ison of COCO, ASM and TimeOpt is presented in Li et al. (2018c).

COCO estimates the correlation coefficient between power spectra
of a sedimentary proxy series in the stratigraphic (depth) domain and
an astronomical solution in the time domain, converting the proxy
series from depth to time for a range of “test” sedimentation rates. The
most likely sedimentation rate corresponds to the one resulting in the
highest correlation coefficient. The COCO method is described in Li
et al. (2018c), summarized as follows.

The Pearson product-moment correlation coefficient (Mudelsee,
2010; Pearson, 1895; Press et al., 1992) is used:

=
=

T D
N

T µ D µ
( , ) 1

1 i

N
i T

T

i D

D1 (5)

where N is the number of observations of the target (T) or data (D) time
series, µT and T are the mean and standard deviation of the target, and
µD and D are the mean and standard deviation of the data series. The
correlation coefficient measures the linear correlation between the
target (T) and data (D) series; in this case, the target series is the un-
smoothed periodogram of the astronomical solution, and the data series

Fig. 6. Left panel: The “Spectral Analysis”
GUI. Right panel: 2π multitaper (MTM)
power spectrum (solid black) of the Log(Fe)
series at Core BH9/05 after removing the
50m “rLOESS” trend and interpolation of
0.2m sample rate. The spectrum showing
red-noise fit to the spectrum (solid green)
based on the conventional AR(1) model.
The 20% median-smoothed spectrum is also
shown (dashed pink). The red-noise fit to
the spectrum based on the robust AR(1)
model (thick black) and 90% (solid red),
95% (dashed red), 99% (red dash-dot),
99.9% (dot) confidence limits are based on
the best fit to the log power of the median-
smoothed background spectrum. Cycle wa-
velengths are marked (in m) at top of se-
lected spectral peaks. (For interpretation of
the references to color in this figure legend,
the reader is referred to the Web version of
this article.)
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is the unsmoothed periodogram of paleoclimate time series at a “test”
sedimentation rate.

The assumption of no astronomical forcing (null hypothesis, H0) is
tested using a Monte Carlo simulation procedure that involves gen-
erating correlation coefficients between the power spectrum of the
target and surrogate power spectra of the data constructed from
random frequencies with random spectral amplitudes (Li et al., 2018c).
The null hypothesis significance level indicates the probability that a
specific correlation coefficient value can occur by chance. The null
hypothesis significance level of 1% means that the original data-model
correlation coefficient value exceeds 99% of the Monte Carlo simulated
values. The number of astronomical parameters contributing to the
correlation coefficient of each test sedimentation rate is also evaluated
(Li et al., 2018c). If a low significance level of the null hypothesis is
derived from the fact that only a few of the total number of astro-
nomical parameters are used in the estimation, a high correlation
coefficient value, in that case, may be suspicious. However, if a small
sliding window is adopted, long orbital eccentricity cycles might not be
detected, and the three precession index cycles may also be merged,
generating valid COCO and eCOCO results even for a small number of
contributing astronomical parameters.

The average sedimentation rate of the log(Fe) series of Core BH9/05
is evaluated using the COCO method. The COCO results show 2 peaks at
19.2 cm/kyr and 4.8 cm/kyr with the highest peak at 19.2 cm/kyr
(Fig. 8). This indicates the mean sedimentation rate at Core BH9/05 is
probably 19.2 cm/kyr. The null hypothesis significance level is no
larger than 1% at 4.8 and 19.2 cm/kyr, indicating the null hypothesis of
no astronomical forcing involved can be rejected at> 99% significance
level. A sedimentation rate of 19.2 cm/kyr involves 5 astronomical
parameters. This is acceptable because the total length of the dataset is
too small to reveal significant 405 kyr long eccentricity cycles (e.g.,
power spectrum in Fig. 6). This sedimentation rate of 19.2 cm/kyr
generally matches with the mean sedimentation rate of 21.5 cm/kyr
reported by Charles et al. (2011). The wide range of the peak at
19.2 cm/kyr likely suggest the sedimentation rates may be variable
throughout this series. Therefore, the eCOCO function that is designed
to track variable sedimentation rates (Li et al., 2018c) is employed
below.

For eCOCO analysis, the COCO procedure is extended to a sliding
window along the data series. The sliding procedure, termed evolu-
tionary correlation coefficient (eCOCO) highlights relatively stable se-
dimentation rates (Fig. 9) estimated along the log(Fe) series, revealing a
best fit sedimentation rate of 16–19 cm/kyr in the 509–534m PETM
“body” interval, which slightly decreases to 13–14 cm/kyr in the PETM
“recovery” interval (487–509m). Subsequently, two options exist after
the PETM event at 480m: (1) sedimentation rates increase gradually to
21 cm/kyr; (2) sedimentation rates decrease to about 7 cm/kyr. Sedi-
mentation rates in other continental margin sections increase multiple
times within the PETM “body” interval (John et al., 2008) and drop
after the PETM (Sluijs et al., 2008). Our result shows a higher resolution
sedimentation rate map than that by Charles et al. (2011) for the BH9/
05 core covering the PETM interval. Due to the lack of data and
chronostratigraphic constraints for the pre-PETM and post-PETM in-
tervals, the increased sedimentation rate during the PETM “body” in-
terval must be tested elsewhere.

4.8. Filtering

Filters are essential tools to aid in the isolation of specific frequency
components in paleoclimate data series. Low-pass filters are useful to
isolate the low-frequency components (similar to the “smoothing” to
tracking secular trend) of a data series, and high-pass filters are used to
isolate the high-frequency components of a data series. Band-pass fil-
tering is valuable for isolating specific frequency bands that may relate
to Milankovitch forcing frequencies or other climate forcing fre-
quencies. Frequency-domain filters are considered the most effective in
cyclostratigraphy as they impose no time delay (thus “zero-phase”) in
the filtered output: The data are Fourier transformed into the frequency
domain, multiplied by the filter, then inverse-Fourier transformed back
to the original domain (Kodama and Hinnov, 2015). Acycle includes a
toolbox for filtering including Gauss and Taner algorithms (Taner,
2000) through gaussfilter.m and tanerfilter.m, (Kodama and Hinnov,
2015) (Fig. 10). The gain function defines how the amplitudes of the
time series components change as a function of frequency during fil-
tering design. The frequency and phase responses of both Gauss and
Taner filters demonstrate that zero phase is maintained through the

Fig. 7. Left panel: The “Evolutionary Power Spectral Analysis” GUI. Middle panel: evolutionary FFT spectrum of the log(Fe) series of Core BH9/05 after removing a
50m “rLOESS” trend. Right panel: 3D evolutionary FFT spectrum of the log(Fe) series. Both middle and right panels use the same running window length of 25m and
a sliding step of 0.2m.
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Fig. 8. COCO analysis of the detrended Fe series of Core BH9/05. Left panel: Unsmoothed periodogram of the entire log(Fe) series with the conventional AR(1)
model. Middle panel: Unsmoothed periodogram of the astronomical solution (Laskar et al., 2004, 55–57Ma; top) and the entire log(Fe) series after removing the AR
(1) model (bottom). Right panel: The correlation coefficient results show potential sedimentation rates at 4.8 cm/kyr and 19.2 cm/kyr (top). Null hypothesis (H0, no
astronomical forcing) testing of the data series indicates that 4.8 cm/kyr and 19.2 cm/kyr sedimentation rates have H0 significance levels less than 1%. Significance
levels are estimated using Monte Carlo simulation of 2000 iterations (middle). The number of contributing astronomical parameters in the tested sedimentation rates
(bottom). Tested sedimentation rates range from 3 to 40 cm/kyr with a step of 0.1 cm/kyr.

Fig. 9. eCOCO results of the Fe series from Core BH9/05. Left panel: Evolutionary correlation coefficient. Middle panel: Evolutionary H0 significance level. Right
panel: Evolutionary number of contributing astronomical parameters. The sliding window size is 25m; the sliding window step is 0.2 m. All periodograms remove the
conventional AR(1) red noise model. The number of Monte Carlo simulations is 2000. Sedimentation rates range from 3 to 30 cm/kyr with a step of 0.1 cm/kyr. (For
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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passband (Kodama and Hinnov, 2015). More information about fil-
tering can be found in Weedon (2003) and Kodama and Hinnov (2015).
Taner filter settings for the optimal extraction of Milankovitch signals
from tuned geological datasets are discussed by Zeeden et al. (2018).

4.9. Age model and tuning

The “Age Scale” toolbox in Acycle is useful to transform original
data (usually in the depth domain) to tuned data (usually in the time
domain) when an age model file is available. The age model may be
based on radioisotopic dating, magnetic reversal age boundaries, time
anchors from biostratigraphic correlation, an astronomical age model,
or combinations of dating (Hilgen et al., 2015). For example, the po-
tential sedimentation rate determined by objective statistical methods
(e.g., eCOCO in Section 4.7), a filtered signal from the data series can be
used to reconstruct an age model by assigning depth of each filtered
series maximum (or minimum) to a time value using Acycle's “Build Age
Model” function. Careful evaluation must be made when tuning, espe-
cially when an astronomical age model is used, because astronomical
tuning can improperly confine data cyclicity into Milankovitch periods
and lead to circular reasoning (Kodama and Hinnov, 2015).

4.10. Sedimentary noise model

A sedimentary noise model was recently developed for the re-
construction of past sea-level changes from astronomically forced
marginal marine stratigraphy (Li et al., 2018a). The model estimates
sedimentary noise that is embedded in the data. The noise that affected
climate and sea level includes: (i) water-depth-related noise such as
storms, bioturbation, and unsteady sedimentation rate; (ii) proxy-re-
lated noise such as proxy sensitivity, measurement error, and dating
error; and (iii) other factors including tectonics, diagenesis, and vol-
canism (Li et al., 2018a). Change in water-depth related noise at a fixed
location in the marginal marine environment is taken as a proxy of
relative sea-level. The sedimentary noise model for sea-level changes
can also be applied to lacustrine basins because the evolution of ter-
restrial basins can also be linked to water level changes, and these
changes can lead to variable sedimentary noise in paleoclimate proxies.

The sedimentary noise model includes two complementary ap-
proaches: lag-1 autocorrelation coefficient (ρ1) and dynamic noise after
orbital tuning (DYNOT). The definition of ρ1 is given in Eq. (4). The
advantage offered by ρ1 is that it evaluates time series directly and is
independent of frequency band selections. It can also work with series
in stratigraphic domain. The DYNOT approach evaluates the ratio of
non-orbital signal variance to the total variance, which is calculated
along a sliding window in time domain. The variance ratios are

obtained from 2π multi-taper variance (power) spectra calculated along
a sliding time window using the MatLab script pda.m (Li et al., 2016).
The noise after removal of the orbital variance in a given time interval
is given by Li et al. (2018a):
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where fmin and fmax are cutoff frequencies for estimation of total var-
iance between fmin= 0.001 kyr−1, and fmax= 1 kyr−1. ΣP(e), ΣP(o), and
ΣP(p) are the power of orbital eccentricity, obliquity and precession
index signals. When sea-level is relatively high, the DYNOT ratio is
lower than the ratio in a time of relatively low sea-level, and vice versa.
Increased noise leads to a decreased ρ1 value, and vice versa.

Both approaches are included in Acycle. Details of these sedimentary
noise models with case studies are provided in Li et al. (2018a).

5. Toolboxes, help menu and supporting documents

The software comes with a simple mathematical function (Eq. (7)),
popular astronomical solutions, and demonstration paleoclimate data
(Fig. 11). The simple mathematical function can generate a new data
series based on the selected data. Both the first and second columns can
be modified using given parameters:

Xi = a× xi + b, (i=1, 2, …, n) (7)

where xi is the ith member of either the first or the second column of
selected data and Xi is the new data value from user defined parameters
of a and b. n is the total number of rows of the selected dataset.

The popular astronomical solutions are the nominal astronomical
solutions of eccentricity, obliquity, and precession including La2004
(Laskar et al., 2004) and La2010 (Laskar et al., 2011) solutions, and

Fig. 10. (Left panel) Filtering toolbox. (Right panel) log(Fe) series are shown with their Gauss bandpass-filtered outputs (passband: 0.05 ± 0.01 cycles/m).

Fig. 11. Toolbox generating astronomical solutions.
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orbital eccentricity and orbital inclination from astronomical solutions
by Zeebe (2017). The 5-myr long tuned stack of Pliocene-Pleistocene
oxygen isotopes (Lisiecki and Raymo, 2005) is also included in Acycle.
Users should cite the original publications if the astronomical solution
or the oxygen isotope data are used in their project.

The Help menu provides information about the formats for the data
files, and a variety of functionalities provided in the software. The re-
vision history of the program, together with the contact address is in-
cluded in the menu labeled “Read Me” and “Contact”. The software will
be updated frequently, and the new version can be found in a menu
labeled “Find Updates”. Sample time series and a User's Guide with
detailed instructions are provided to help the user understand and use
the software.

6. Other software for paleoclimate time series analysis

There are several other popular software packages for paleoclimate
series analysis and cyclostratigraphy: Astrochron, AnalySeries,
QAnalySeries, SSA-MTM toolkit, PAST, REDFIT, kSpectra, Arand, and
others. The open source software Astrochron (Meyers, 2014) has re-
cently become one of the most popular and powerful programs in cy-
clostratigraphy. It uses the R language, and is maintained by Stephen R.
Meyers at University of Wisconsin–Madison. Astrochron includes two
separate statistical tests of astronomical forcing and estimation of se-
dimentation rates using the ASM (and eASM) and TimeOpt (and eTi-
meOpt) methods (see Section 3.6). Astrochron is available at https://
CRAN.R-project.org/package=astrochron. For novice users, specific
examples are provided in the Astrochron help documents. The Analy-
Series 2.0.8 is a simple but powerful tool in cyclostratigraphy, but is
limited to the Mac OS platform and has no help documentation
(Paillard et al., 1996). QAnalySeries is new software written in Qt SDK
that re-implements the major functionality of AnalySeries (Kotov and
Pälike, 2018), and can be run on Mac OS, Windows and Linux systems
(at https://www.marum.de/en/Dr.-sergei-kotov/Software-2.html). The
SSA-MTM toolkit has been widely used in time series analysis due to its
power in spectral analysis and signal-to-noise detection and is im-
plemented on Unix (Linux) and Mac OS (Ghil, 1997) (at http://
research.atmos.ucla.edu/tcd//ssa/). The PAST software is designed
for paleontological data analysis with functions for univariate and
multivariate statistics, ecological analysis, time series and spatial ana-
lysis, and stratigraphy (Hammer et al., 2001) (at https://folk.uio.no/
ohammer/past/). PAST works with Windows and Mac OS. REDFIT is a
Windows-based spectral analysis software package (Schulz and
Mudelsee, 2002) that estimates red-noise spectra directly from irregu-
larly spaced time series, without requiring interpolation. The kSpectra
Toolkit from SpectraWorks (http://www.spectraworks.com/) is for Mac
OS.

In comparison, Acycle runs on both Mac and Windows with
MATLAB and is available as stand-alone software. With its graphic user
interface, the Acycle software is easy to use and understand since no
coding experience is needed. Acycle includes unique functions such as
correlation coefficient analysis and sedimentary noise model for sea
level, not included in the above packages. Furthermore, the Acycle
software is also characterized by its educational purpose.

7. Summary

Acycle is a convenient and powerful program for performing ana-
lysis of depth- and time-series, providing advanced visualization, pub-
lication-quality graphics, and saving results. With its graphical user
interface, the software is easy to use and understand. Our experience
shows that this software facilitates the training of students in time series
analysis, especially for studies in paleoclimatology and astrochronology
as part of integrated stratigraphy.

Acycle reads and writes delimited data files with the ability to sort
and select data slices. The integrated toolboxes conduct detrending with

multiple approaches to track and remove secular trends. Functions for
power spectral analysis are available for the detection of periodic sig-
nals and the background spectrum. Acycle can generate pseudo-color
and 3D plots of the evolutionary power spectrum to track variable
frequencies. For astrochronology, a correlation coefficient function es-
timates optimal sedimentation rate and an evolutionary correlation
coefficient function tracks variable sedimentation rates along sedi-
mentary records. Finally, Acycle models sedimentary “noise” and pro-
vides options for hypothesis testing. Analytical results and graphical
output can be printed and saved.

Notice: Acycle analyzes time series with user-defined parameters.
The responsibility for the reliability of the data and correct inter-
pretation lies with the user.
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Link to the code

The Acycle website is www.mingsongli.com/acycle, and the soft-
ware can be downloaded fromhttps://github.com/mingsongli/acycle.

Computer code availability

Acycle was developed by Mingsong Li with contributions from Linda
Hinnov. Contact address of Mingsong Li is 410 Deike Bldg, University
Park, PA 16802, USA. Tel: +1-(410)504–2885; e-mail: mul450@psu.
edu, limingsonglms@gmail.com. Contact address of Linda Hinnov is
3457 Exploratory Hall, George Mason University, Fairfax, VA 22030,
USA. Tel: +1-(703)993–8072; e-mail: lhinnov@gmu.edu. Acycle was
first made available in 2018. There is no specific requirement for
hardware. Operating systems include Windows XP or later and Mac OS
X 10.6 or later. Acycle was developed using MATLAB version 2015b and
2017a. MATLAB is essential for the MATLAB version of the Acycle
package. And MATLAB runtime (free, available at: www.matlab.com) is
required for the Acycle stand-alone software. The size of Acycle
(MATLAB version) is 50MB. The size of Acycle (stand-alone version) is
100MB. The official website for Acycle is www.mingsongli.com/acycle,
and the software can be downloaded from: https://github.com/
mingsongli/acycle. A User's Guide can be downloaded from https://
github.com/mingsongli/acycle/blob/master/doc/AC_Users_Guide.pdf.
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Acycle can be downloaded from https://github.com/mingsongli/
acycle.
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Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.cageo.2019.02.011.
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